首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90709篇
  免费   9781篇
  国内免费   5738篇
化学   25187篇
晶体学   1900篇
力学   6419篇
综合类   513篇
数学   19902篇
物理学   52307篇
  2023年   278篇
  2022年   382篇
  2021年   585篇
  2020年   989篇
  2019年   1222篇
  2018年   1220篇
  2017年   1002篇
  2016年   897篇
  2015年   803篇
  2014年   1865篇
  2013年   2417篇
  2012年   1933篇
  2011年   2625篇
  2010年   3049篇
  2009年   7552篇
  2008年   8713篇
  2007年   7169篇
  2006年   6589篇
  2005年   4710篇
  2004年   4431篇
  2003年   4608篇
  2002年   5176篇
  2001年   4159篇
  2000年   3857篇
  1999年   3622篇
  1998年   3023篇
  1997年   2145篇
  1996年   1929篇
  1995年   2395篇
  1994年   2278篇
  1993年   1723篇
  1992年   1233篇
  1991年   961篇
  1990年   751篇
  1989年   671篇
  1988年   627篇
  1987年   458篇
  1985年   976篇
  1984年   652篇
  1983年   506篇
  1982年   670篇
  1981年   819篇
  1980年   736篇
  1979年   572篇
  1978年   585篇
  1977年   544篇
  1976年   542篇
  1975年   319篇
  1974年   357篇
  1973年   468篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
71.
In this work, a study of the mechanism by which free‐stream acoustic and vorticity disturbances interact with a boundary layer flow developing over a flat plate featuring a step excrescence located at a certain distance from a blunt leading edge is included. The numerical tool is a high‐fidelity implicit numerical algorithm solving for the unsteady, compressible form of the Navier–Stokes equations in a body‐fitted curvilinear coordinates and employing high‐accurate compact differencing schemes with Pade‐type filters. Acoustic and vorticity waves are generated using a source term in the momentum and energy equations, as opposed to using inflow boundary conditions, to avoid spurious waves that may propagate from boundaries. The results show that the receptivity to surface step excrescences is largely the result of an overall adverse pressure gradient posed by the step, and that the free‐stream disturbances accelerate the generation of instabilities in the downstream. As expected, it is found that the acoustic disturbance interacting with the surface imperfection is more efficient in exciting the Tollmien–Schlichting waves than the vorticity disturbance. The latter generates Tollmien–Schlichting waves that are grouped in wave packets consistent with the wavelength of the free‐stream disturbance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
This paper reports on the numerical investigations of Taylor-Couette flow of radius ratio η = 0.25–0.6 performed at low Reynolds numbers Re = 100–200. The inner cylinder and the bottom end-wall rotate, while the outer cylinder and the top end-wall are held fixed. A fully 3D DNS code based on the spectral Chebyshev – Fourier approximation is used. This study is complementary to those of Mullin and Blohm (Phys. of Fluids 2001, vol 13, 136–140) and Lopez et al. (J. Fluid Mech. 2004, vol 501, 327–354) where investigations have been performed for radius ratio 0.5. The 1-cell and 3-cell structures found by these authors are shown to exist for a wide range of radius ratios, and the transition processes between them are qualitatively similar. These structures show hysteresis, disappearing at saddle-node bifurcations which connect at a cusp point in the (Re, Γ) plane. This cusp exists for the entire range of 0.1 < η < 0.75, and it traces out a parabolic curve in the (Re, Γ) plane, reaching a minimum Re at η = 0.375. The detailed 3D DNS computations provide a lot of new information about such phenomena as the modulated rotating wave, the period doubling cascade and homoclinic collision. The results show that the period doubling bifurcation is important in the flow when the radius ratio is close to η = 0.375.  相似文献   
73.
In this study, the electrocatalytic characteristics of nitrogen‐doped carbon (NDC) prepared from Clerodendrum Infortunatum L leaves on a glassy carbon electrode (GCE) surface was evaluated with regards to its ability to detect the electroactive drug ketoconazole (KCZ). The NDC was prepared by carrying out a simple pyrolysis of dry powder of the leaves at 850 °C. The prepared NDC was characterized using field‐emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and Brunauer‐Emmett‐Teller analysis, and was then used as an electrode material. The performance of the electrochemical KCZ sensor with the NDC‐modified glassy carbon electrode (NDC/GCE) was found to be optimal when using PBS buffer at pH 3 and a concentration of 0.1 mg/ml of NDC in the conjugate with Nafion polymer. Under these conditions, the NDC/GCE displayed a KCZ detection limit of 3 μM and a linear dependence of its response on KCZ concentration over a wide range of KCZ concentrations from 47 μM to 752 μM (R2=0.9742). These results confirmed the potential of NDC as an electrocatalyst.  相似文献   
74.
Phase-resolved information is necessary for many coastal wave problems, for example, for the wave conditions in the vicinity of harbor structures. Two-dimensional (2D) depth-averaging shallow water models are commonly used to obtain a phase-resolved solution near the coast. These models are in general more computationally effective compared with computational fluid dynamics software and will be even more capable if equipped with a parallelized code. In the current article, a 2D wave model solving the depth-averaged continuity equation and the Euler equations is implemented in the open-source hydrodynamic code REEF3D. The model is based on a nonhydrostatic extension and a quadratic vertical pressure profile assumption, which provides a better approximation of the frequency dispersion. It is the first model of its kind to employ high-order discretization schemes and to be fully parallelized following the domain decomposition strategy. Wave generation and absorption are achieved with a relaxation method. The simulations of nonlinear long wave propagations and transformations over nonconstant bathymetries are presented. The results are compared with benchmark wave propagation cases. A large-scale wave propagation simulation over realistic irregular topography is shown to demonstrate the model's capability of solving operational large-scale problems.  相似文献   
75.
This paper presents the effect of insecticides on the composition of the surface compounds of one of the most harmful insects, Tenebrio molitor, by analysis using GC–MS. As a result of the use of insecticides, the composition of the chemical compounds on the surface of insects changes, depending on the insecticides used. The most numerous groups of the marked compounds were fatty acids, alkanes, esters and sterols. The content of the identified compounds in the larvae increased at both 24 and 48 h after the application of insecticides, in comparison with the control samples. The content of identified compounds in the samples taken from the females increased 24, 48 and 72 h after the application of insecticides in comparison with the control samples. By contrast, in samples prepared from males, the content of identified compounds decreased 24 h after the application of insecticides, compared with the control samples. The highest content of chemical compounds was for fatty acids and alkanes after the use of insecticides. The content of fatty acids after the application of the insecticide with deltamethrin was 62.1 ± 3.3–466.9 ± 5.9 μg/g, and after the application of the insecticide with cyfluthrin was 49.9 ± 1.9–458.3 ± 4.2 μg/g. However, the content of alkanes after the use of deltamethrin was 115.6 ± 4.2–4672.0 ± 32.1 μg/g, and after the use of cyfluthrin was 189.4 ± 3.8–3975.0 ± 10.2 μg/g.  相似文献   
76.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
77.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
78.
Superperiodicity, chaos and coexisting orbits of ion-acoustic waves (IAWs) are studied in a multi-component plasma consisting of fluid ions, q -nonextensive cold and hot electrons and Maxwellian hot positrons. The significant impacts of the system parameters on superperiodic and nonlinear periodic IAWs are presented. Considering an external periodic perturbation various types of quasiperiodic and chaotic features for IAWs are studied in different parametric ranges through time series’ plots, phase spaces and Lyapunov exponents. It has been observed that there exist some coexisting orbits for IAWs. Coexisting orbits for IAWs in a classical electron–positron–ion plasma system are reported.  相似文献   
79.
80.
《Physics letters. A》2020,384(27):126729
The integrability nature of a nonparaxial nonlinear Schrödinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painlevé singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painlevé test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号